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ABSTRACT

The validation of satellite surface soil moisture products requires comparisons between point-scale ground

observations and footprint-scale (.100 km2) retrievals. In regions containing a limited number of mea-

surement sites per footprint, some of the observed difference between the retrievals and ground observations

is attributable to spatial sampling error and not the intrinsic error of the satellite retrievals themselves. Here,

a triple collocation (TC) approach is applied to footprint-scale soil moisture products acquired from passive

microwave remote sensing, land surface modeling, and a single ground-based station with the goal of the

estimating (and correcting for) spatial sampling error in footprint-scale soil moisture estimates derived from

the ground station. Using these three soil moisture products, the TC approach is shown to estimate point-to-

footprint soil moisture sampling errors to within 0.0059 m3 m23 and enhance the ability to validate satellite

footprint-scale soil moisture products using existing low-density ground networks.

1. Introduction

The upcoming National Aeronautics and Space Ad-

ministration (NASA) Soil Moisture Active Passive

(SMAP) mission and the recently launched European

Space Agency (ESA) Soil Moisture Ocean Salinity

(SMOS) mission are designed to retrieve surface soil

moisture at coarse spatial resolutions (100 km2 for SMAP

and 1600 km2 for SMOS). Both missions include ground

validation activities to verify that retrievals meet required

root-mean-square error (RMSE) accuracy goals. How-

ever, these activities are hampered by the scale contrast

between satellite-based sensor resolutions and the point-

scale nature of ground-based instrumentation used for

validation (Crow et al. 2005). Since the majority of the

available ground-based soil moisture observations are

from low-density networks in which one or two measure-

ments are available per satellite footprint (T. J. Jackson

2010, personal communication), the direct comparison

of ground networks to footprint-scale satellite soil mois-

ture retrievals will yield mean-square differences (MSDs),

which are a function of the intrinsic accuracy of the re-

mote sensing product as well as the spatial representa-

tiveness of the ground observations (Cosh et al. 2008).

Given the high levels of spatial variability typically ob-

served in soil moisture fields (Famiglietti et al. 2008), poor

representativeness may artificially inflate the measured

MSD comparisons above mission accuracy goals.

Recently, Scipal et al. (2008) proposed the application

of a triple collocation (TC) procedure (Stoffelen 1998;

Caires and Sterl 2003; Janssen et al. 2007) to soil mois-

ture. TC is based on the premise that uncertainty in

three parallel estimates of a single variable can be de-

duced if the estimates possess mutually independent

errors. Here, we describe the first application of a TC

approach to ground-based soil moisture instrumentation

and the estimation of sampling errors associated with the

spatial upscaling of their measurements. As described

above, the direct comparison of point-scale ground ob-

servations with satellite-based soil moisture retrievals

yields an MSD that is inflated by the sampling error as-

sociated with acquiring footprint-scale means using sparse

ground observations. Our goal here is to apply TC to

estimate (and correct for) the portion of the total MSD

between the ground observations and the retrievals
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attributable to the spatial sampling error and improve

prospects for adequately validating soil moisture re-

trievals using existing ground-based instrumentation.

2. Triple collocation

Our TC approach is based on three separate time se-

ries assumed to approximate footprint-scale (.100 km2)

surface soil moisture (u): a microwave remote sensing

product (uRS), a land surface model product (uLSM), and

a ground-based product derived from a single point-scale

observation within each footprint (uPOINT). All three

products contain errors arising from mutually distinct

sources. Remotely sensed estimates are impacted by in-

strument noise and uncertainty in microwave emission

modeling. Model-based estimates suffer from a simplified

parameterization of soil water loss and forcing data error.

Coarse-scale soil moisture estimates obtained from a

single point-scale observation are degraded by sensor

calibration/measurement errors and representativeness

errors due to the inherent spatial heterogeneity of surface

soil moisture fields. Given the diversity of these sources, it

appears reasonable to assume that the three products

contain mutually independent errors.

Prior to the application of TC, each product is decom-

posed into its climatology mean and anomaly components:

u
i
5 u9

i
1 huiND(i), (1)

where huiND(i) is the climatological expectation for soil

moisture at the day of year (D) associated with time step

i and u9i is the actual anomaly relative to this expecta-

tion. Values of huiND(i) are calculated through moving

window averaging of multiyear data within a window

size of N days centered on D. The implications of this

decomposition are discussed further in section 5. In ad-

dition, u9RS and u9LSM are rescaled to match the temporal

variance of u9POINT. Unless otherwise noted, N 5 31 days

and the subscript i is dropped in future references to time

series variables.

Differences in the temporal anomalies estimated by

the remote sensor and point-scale ground observations

can be written as
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where u9TRUE represents the true anomaly time series.

Assuming mutual independence of error in the remote

sensing observations (u9RS 2 u9TRUE) and point observations

(u9TRUE 2 u9POINT), the mean of the square of both sides is
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or equivalently
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where the measurable quantity MSD(u9RS, u9POINT)

differs from the true validation quantity of interest

MSD(u9RS, u9TRUE) due to the spatial sampling error

MSD(u9POINT, u9TRUE). Our approach applies TC to esti-

mate MSD(u9POINT, u9TRUE) and uses (4) to correct esti-

mates of MSD(u9RS, u9TRUE) based on measured values of

MSD(u9RS, u9POINT).

TC is based on expressing the relationship between

temporal anomalies in all three available soil moisture

estimates (u9RS, u9POINT and u9RS) and true soil moisture

anomalies as
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where the � terms denote times series errors relative to

u9TRUE.

Subtracting (6) and (7) from (5) yields
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and (8)
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Multiplying (8) and (9) and averaging in time (denoted

by ‘‘h2i’’) gives
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Assuming mutually independent errors, (10) collapses to
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Our goal is validating estimates of MSD(u9POINT,

u9TRUE) from (11) with independent estimates of the same

quantity acquired from ground-based soil moisture net-

works within data-rich watershed sites. TC-based esti-

mates of MSD(u9POINT, u9TRUE) can then be combined

with (4) to improve estimates of MSD(u9RS, u9TRUE)

without access to extensive ground-based measurements.

Note that the success of both inferences hinges on the, as

of yet untested, independent error assumptions under-

lying (4) and (11).
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3. Data and processing

The verification analysis described above is conducted

over four U.S. Department of Agriculture (USDA)

Agricultural Research Service (ARS) experimental

watersheds: the Little River (LR), Georgia (Bosch et al.

2007), the Little Washita (LW), Oklahoma (Allen and

Naney 1991; Cosh et al. 2006), the Reynolds Creek

(RC), Idaho (Slaughter et al. 2001), and the Walnut

Gulch (WG), Arizona (Renard et al. 2008; Cosh et al.

2008). As a group, they provide a range of climate, land

cover, and topographic conditions under which to eval-

uate TC. Each watershed also contains a network of

about 20 Stevens Water Hydra Probe surface (0–5 cm)

soil moisture sensors installed at USDA Micronet sites

within each watershed. See Fig. 1 for watershed/network

site locations and Table 1 for a summary of the water-

shed characteristics and soil moisture instrumentation.

Further details are given in Jackson et al. (2010).

To obtain a reference dataset to verify TC predictions,

a Thiessen polygon approach is used to interpolate all

available 1330 local solar time (LST) ground-based soil

moisture measurements up to a single watershed-scale

daily time series of uNETWORK (Jackson et al. 2010).

While uNETWORK represents the best-available approx-

imation of uTRUE for a watershed, small instrumental

and spatial sampling errors in uNETWORK can still arti-

ficially inflate their MSD comparisons with other soil

moisture products. To correct for this, the estimated error

variance in u9
NETWORK

(h�
NETWORK2i) is correctively sub-

tracted from MSD comparisons with u9NETWORK to esti-

mate MSD versus u9TRUE:

MSD(u9
POINT/RS

, u9
TRUE

)

5 MSD(u9
POINT/RS

, u9
NETWORK

)�h�
NETWORK2i. (12)

Based on comparisons with gravimetric soil moisture mea-

surements obtained during field campaigns, h�NETWORK
2i is

assumed to be on the order of 0.0102 m6 m26 (Cosh et al.

2006; Cosh et al. 2008). In addition, multiple sets of uPOINT

time series are acquired by repeatedly selecting different

FIG. 1. Location of USDA Micronet sites within the four USDA ARS experimental watersheds

listed in Table 1.
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individual sensor locations to represent each watershed.

Only locations containing measurements for at least 50%

of the days in the study period (2 February 2002 to end

dates listed in Table 1) are used to represent uPOINT.

Our uRS estimates are based on 0.258 single-channel

algorithm (Jackson et al. 2010) retrievals acquired from

Advanced Microwave Scanning Radiometer (AMSR-E)

10.6-GHz brightness temperature observations. Only data

from the 1330 LST AMSR-E overpass are considered.

Time series of uRS for each watershed are extracted from

the 0.258 pixel most closely matching each watershed.

Validation work has demonstrated that the measurement

depth of these retrievals is consistent with the ground

measurements described above (Jackson et al. 2010).

Our uLSM estimates are based on 0–5-cm surface soil

moisture predictions from a 0.1258 Noah land surface

model (LSM; Mitchell 2009) simulation run on a 30-min

time step and driven by the North American Land Data

Assimilation System (NLDAS) forcing dataset (Cosgrove

et al. 2003), the Foreign Agricultural Office world soil

classification with Reynolds et al. (2000) soil/clay frac-

tions, and the 1-km global land cover classification of

Hanson et al. (2000). Soil and vegetation parameter

lookup tables are based on the Noah implementation for

the NLDAS project (Robock et al. 2003). Soil moisture

states are spun up for 18 months prior to the start of the

analysis, and surface values for the multiple Noah 0.1258

pixels corresponding to each watershed are spatially

averaged to obtain a single uLSM for each watershed.

4. Results

As stated in section 1, our goal is the estimation of

MSD(u9POINT, u9TRUE) based solely on the availability

of u9RS, u9LSM and u9POINT. By comparing TC-based esti-

mates of MSD(u9POINT, u9TRUE) from (11) with compa-

rable statistics obtained from extensive ground-based

measurements, we can verify the assumption of mutu-

ally independent errors that underlies the approach.

Figure 2 provides such a comparison by summariz-

ing TC results for the four watersheds described above.

Each point represents the use of a single sensor in a given

watershed as u9POINT. Expressed in terms of the square

root of MSD (RMSD), the plot compares RMSD(u9POINT,

u9TRUE) values calculated using u9NETWORK and (12) to

TC-based estimates acquired by taking the square root of

(11). Relative to benchmark values of RMSD(u9POINT,

u9TRUE) obtained independently from (12), TC estimates

of RMSD(u9POINT, u9TRUE) utilizing only u9RS, u9LSM and

u9POINT data are nearly unbiased and have an RMSE ac-

curacy of 0.0059 m3 m23. Despite their intrinsic vari-

ability, the TC approach appears to work equally well in

all four watersheds. Problems with the underlying TC

assumption of mutually independent errors would man-

ifest themselves as nonzero covariance terms on the right-

hand side of (10) and induce bias in (11) relative to (12).

The lack of any apparent bias (and/or extensive scatter)

TABLE 1. Summary of the physical characteristics and ground-based, surface (0–5 cm) soil moisture instrumentation for the four USDA

ARS experimental watersheds.

Little River (LR) Little Washita (LW) Reynolds Creek (RC) Walnut Gulch (WC)

Location (lat, lon) 31.68, 283.78 34.98, 298.18 43.28, 2117.08 31.78, 2110.18

Area (km2) 334 611 239 150

Climate Humid Subhumid Alpine Semiarid

Land cover Crops/forest Rangeland/crops Alpine forest/shrubs Shrubs/shortgrass

Relief Moderate Low High Moderate

Soil moisture sites 29 20 21 21

End date 23 Sep 2007 26 Aug 2007 18 Sep 2007 25 Jul 2007

FIG. 2. For N 5 31 days in (1), the relationship between

actual RMSD(u9POINT, u9TRUE) based on (12) and TC-estimated

RMSD(u9POINT, u9TRUE) based on (11).
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in Fig. 2 implies that these assumptions have been ade-

quately met within our three collocated u9 estimates.

Values of RMSD(u9POINT, u9TRUE) in Fig. 2 are based

on h�NETWORK
2i 5 0.0102 m6 m26 in (12). However, re-

sults are generally robust to assumptions concerning

h�NETWORK
2i. Assuming h�NETWORK

2i 5 0, for instance,

leads to only a slight increase in RMSE (from 0.0059 to

0.0062 m3 m23). In addition, N 5 31 days in (1) dictates

that soil moisture anomalies are calculated relative to

a seasonally varying climatology. In contrast, selecting

N 5 365 days means that anomalies are calculated relative

to a fixed soil moisture mean across the entire seasonal

cycle. Recreating Fig. 2 for N 5 365 days (Fig. 3) increases

the RMSE from 0.0059 to 0.0089 m3 m23, suggesting that

TC works better when variations in soil moisture clima-

tology are taken into account.

Another relevant issue is the required accuracy of the

LSM. Decreasing LSM accuracy (via, e.g., an excessive

coarsening of the spatial resolution or the degradation of

the model physics) increases �LSM and therefore the

sampling uncertainty in the h�LSM�RSi and h�LSM�POINTi
covariance terms on the right-hand side of (10). Since (11)

is based on neglecting these terms, such noise induces

a greater amount of random error into TC estimates. To

examine the magnitude of this impact, the Noah LSM is

replaced with a simple antecedent precipitation index,

where uLSM is generated via

u
iLSM

5 0.85u
i�i,LSM

1 P
i

(13)

and Pi is a watershed-scale daily rainfall accumulation

based on the Tropical Rainfall Measurement Mission’s

(TRMM) 0.2508 3B42 rainfall product. Relative to Noah,

(13) represents a degradation in resolution (from 0.1258

to 0.2508), forcing data (from gauge-based NLDAS to

satellite-based TRMM 3B42 rainfall), and the quality of

the LSM physics. Nevertheless, duplicating Fig. 2 for

uLSM from (13) (not shown) produces only a modest in-

crease in the RMSE of TC-based RMSD(u9POINT, u9TRUE)

(from 0.0059 to 0.0082 m3 m23). This implies that the

approach is relatively tolerant to variations in LSM

performance.

By combining TC-based estimates of MSD(u9POINT,

u9TRUE) from Fig. 2 with the observable quantity

MSD(u9RS, u9POINT), RMSD(u9RS, u9TRUE) can be esti-

mated as the square root of (4). Figure 4b shows the re-

lationship between such estimates and actual values of

RMSD(u9RS, u9TRUE) obtained from (12). For compari-

son, Fig. 4a shows the same relationship but assumes

MSD(u9POINT, u9TRUE) 5 0. Due to sub-watershed-scale

soil moisture variability, the comparison of a single point-

scale ground observation with a footprint-scale AMSR-E

retrieval leads to an inflated estimate of RMSD(u9RS,

u9TRUE) (Fig. 4a). Estimating MSD(u9POINT, u9TRUE)

via (11) and inserting it into (4) improves our ability to

recover RMSD(u9RS, u9TRUE) and thus validate uRS

(Fig. 4b).

5. Summary and discussion

The NASA SMAP and ESA SMOS missions are

faced with RMSE-based error validation goals for their

surface soil moisture products. For most areas, the sole

basis for demonstrating such accuracies is comparisons

with ground-based soil moisture networks that provide

a very small number of observations per satellite foot-

print. Consequently, retrieval error estimates from such

comparisons are spuriously inflated. Requiring only the

added availability of a LSM simulation, the TC ap-

proach described here offers a viable approach for

addressing this problem. In particular, results in Figs. 2

and 3 demonstrate the ability of a TC-based procedure

to estimate spatial sampling errors associated with us-

ing low-density soil moisture observations to obtain

footprint-scale soil moisture averages. When combined

with (4), the accurate specification of these errors pro-

vides a robust basis for removing the positive bias in

RMSD(u9RS, u9POINT) associated with ground-based spa-

tial sampling errors (Fig. 4). That is, application of the

TC approach enhances our ability to validate remotely

sensed soil moisture estimates using existing low-density

soil moisture networks.

FIG. 3. For N 5 365 days in (1), the relationship between

actual RMSD(u9POINT, u9TRUE) based on (12) and TC-estimated

RMSD(u9POINT, u9TRUE) based on (11).
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The presented approach is limited to recovering in-

formation about the accuracy of soil moisture temporal

anomalies obtained from (1) and cannot therefore predict

the long-term bias of a particular point-scale observation

site relative to a footprint-scale average. However, such

biases can potentially be estimated based on knowledge

of local land surface conditions (Grayson and Western

1998) and/or the application of a spatially distributed

LSM (Crow et al. 2005). In addition, most data assim-

ilation systems require the rescaling of soil moisture

retrieval products into a particular LSM’s unique clima-

tology prior to analysis. In such cases, the information

content of the remote sensing retrievals is based solely

on their representation of anomalies (Koster et al. 2009).

Consequently, the ability of a TC approach to validate

the representation of soil moisture anomalies in remote

sensing products is arguably addressing the most critical

aspects of the problem.
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