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[11 The accurate specification of observing and/or modeling error statistics presents a
remaining challenge to the successful implementation of many land data assimilation
systems. Recent work has developed adaptive filtering approaches that address this issue.
However, such approaches possess a number of known weaknesses, including a required
assumption of serially uncorrelated error in assimilated observations. Recent validation
results for remotely sensed surface soil moisture retrievals call this assumption into
question. Here we propose and test an alternative system for tuning a soil moisture data
assimilation system, which is robust to the presence of autocorrelated observing error. The
approach is based on the application of a triple collocation approach to estimate the error
variance of remotely sensed surface soil moisture retrievals. Using this estimate, the
variance of assumed modeling perturbations is tuned until normalized filtering innovations
have a temporal variance of one. Real data results over three highly instrumented
watershed sites in the United States demonstrate that this approach is superior to a classical
tuning strategy based on removing the serial autocorrelation in Kalman filtering
innovations and nearly as accurate as a calibrated Colored Kalman filter in which

autocorrelated observing errors are treated optimally.
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1. Introduction

[2] During the past decade, the Ensemble Kalman filter
(EnKF) has been extensively applied to the assimilation of
satellite-based surface soil moisture retrievals into land
surface models [see, e.g., Reichle and Koster, 2005; Reichle
et al., 2007 or Bolten et al., 2010]. An important attribute of
the EnKF is its flexibility with regards to land surface
modeling errors [Reichle et al., 2002]. Because background
error/covariance information in the EnKF is propagated via
a Monte Carlo ensemble of model forecasts, almost any type
of error can be represented. However, such flexibility exceeds
our current knowledge concerning the appropriate type,
magnitude and structure of modeling error to assume for land
surface model predictions [Crow and Van Loon, 2006; De
Lannoy et al., 2009]. As a result, most soil moisture EnKF
applications are based on ad hoc or overly simplistic error
models. Such gaps in knowledge have practical consequences
given that inappropriate assumptions regarding the magni-
tude of modeling and observing errors lead to sub-optimal
filter performance and the degradation of EnKF predictions
[Crow and Van Loon, 2006; Reichle et al., 2008; Crow and
Reichle, 2008].

[3] A possible solution to this problem is the application
of adaptive filtering approaches which attempt to diagnose
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the correct covariance of both modeling and observation
errors based on the statistical analysis of filtering innova-
tions (i.e., the time series of observations minus the model
background realized during the analysis cycle). In classical
Kalman filtering (KF) theory, optimal assumptions regard-
ing the relative magnitude of modeling and observation
error lead to a time series of serially uncorrelated (i.e.,
“white”) innovations [Mehra, 1970]. Recent work by Crow
and Reichle [2008] exploits this constraint by developing a
series of land surface adaptive filtering approaches to itera-
tively whiten EnKF innovations. However, two shortcomings
are evident in their results. First, while innovation whitening-
based adaptive filter approaches eventually converge to the
correct error magnitude; they do so only at relatively large
time scales (>5 years) which are incompatible with the
expected duration of upcoming satellite missions aimed at
the remote estimation of surface soil moisture. Second, the
most promising adaptive filtering approaches are based on
an assumption that observing errors are temporally uncorre-
lated. New comparisons with long-term soil moisture times
series derived from dense ground-based networks (presented
here) call this assumption into question. If not properly ac-
counted for, the presence of autocorrelated observing errors
can erode the ability of whitening-based adaptive filtering
approaches to identify optimal error parameters.

[4] This paper will address these two shortcomings by
exploring an alternative approach to recovering appropriate
error information for a KF and/or EnKF. The approach is
based the application of a triple collocation (TC) procedure
to independently estimate soil moisture retrieval errors in
the absence of ground-based soil moisture observations
[Scipal et al., 2008; Miralles et al., 2010]. Our particular TC
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approach follows Scipal et al. [2008] by estimating error in
passive microwave retrievals of surface moisture through
comparisons with independent soil moisture data products
obtained from an active microwave scatterometer and a land
surface model. While the approach requires strict indepen-
dence between errors in each of the three data products, it
functions well even if errors in each product are temporally
autocorrelated.

[5] In addition to innovation whiteness, a second theo-
retical constraint is that, when properly normalized by the
sum of observation and forecasting error covariance, KF
innovations should have unity variance [Dee, 1995]. If the
statistical properties of observing errors are determined via
TC, this constraint can be used to define the optimal mag-
nitude of modeling errors [Mitchell and Houtekamer, 1999].
In addition, Crow and Reichle [2008] demonstrate that
adaptive tuning of modeling error parameters to match the
innovation variance constraint converges much faster than
tuning to achieve a serially white innovation sequence.
Consequently, a soil moisture adaptive filtering approach
based on using TC to estimate observing errors, and the
subsequent tuning of modeling error to satisfy an innovation
variance constraint, should address key outstanding issues
for the design of such systems. The goal of this paper is to
test this potential through a series of data assimilation
experiments conducted with real remotely sensed soil mois-
ture datasets.

2. Background

[6] As discussed above, our approach is based on an
understanding of the impacts of autocorrelated observing
errors on KF innovation statistics and the application of a
triple collocation (TC) scheme to independently estimate
observation error covariance information. This section
describes these two topics in greater detail.

2.1. Kalman Filtering and Innovation Statistics

[7] To provide an initial examination of the impact of
autocorrelated observing error on KF increments, we will
employ a linear modeling strategy. In this simplified case,
soil moisture forecasting is based on the well-known
Antecedent Precipitation Index (API)

APL; = yAPI;- + P, )

where i is a daily time index and P a daily rainfall accu-
mulation total in mm. For simplicity the unit-less loss
parameter +y is held fixed at 0.85.

[8] The assimilation of remotely sensed estimates of
surface soil moisture (Ags) into (1) using a KF requires that
assumptions be made concerning the nature of both mod-
eling and observing errors. With regards to modeling error,
we assume that during the propagation of API from day i - 1
to i, an additive Gaussian noise term 7 is introduced into
API forecasts which has a mean of zero, a scalar variance of
0 and no serial autocorrelation (i.e., a lag-one autocorrela-
tion p; of zero). This term represents the net impact of
stochastic error in P and the overly simplistic representation
of soil moisture loss in (1). Note that the individual pertur-
bations 7); are aggregated via the first-order autoregressive
structure of (1) to create autocorrelated error in API forecasts.
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Likewise, individual frg retrievals at time i are assumed to be
perturbed by an additive error term £ which is mean-zero,
serially white, and has constant variance R.

[o] Prior to assimilation, fgrg retrievals are transformed
via cumulative probability function (CDF) matching into
a time series (PRE") possessing the same long-term proba-
bility density function as API predictions derived from (1)
[Reichle and Koster, 2005].

[10] Given the availability of 6gs"
updates (1) via

at time i, the KF

APLS = AP+ K; (0381 — APL ), 2)

_»

where and “+” denote values before and after KF
updating. The KF gain K in (2) is given by

Ki =T /(T7 +R), 3)

where 7 is the background error variance in API forecasts.
When 6gg retrievals are available, 7~ is updated following
T = (- K)T; . )

i

[11] Between measurements, API is forecasted in time
using P and (1). Likewise, the model forecast error 7" is
advanced in time following

7 =T +0 (5)

[12] For this particular case, the adaptive filtering problem
is defined as obtaining scalar estimates of Q and R (Q and R)
which accurately describe model and observation error
covariance characteristics and therefore optimize the per-
formance of the KF. Classical adaptive filtering approaches
are based on examining the temporal statistics of normalized
filtering innovations

v = (08 = APL ) /(17 +R)™. (6)

[13] A properly constructed linear filter should yield a v
time series that is serially uncorrelated (p;(v) = 0) with unit
variance (var(v) = 1) [Gelb, 1974]. Hereinafter, these two
constraints are referred to as the innovation “whiteness” and
the “variance” constraints, respectively.

[14] Figure 1 illustrates results for a v-tuning approach
based on these two constraints. Results are derived from a
synthetic twin data assimilation experiment. Using a daily
time series of rainfall for the Little Washita River basin in
Oklahoma, “truth” soil moisture values are generated using
(1). These values are synthetically degraded by additive
Gaussian noise (with variance R) to represent the uncertain
retrieval of soil moisture from a satellite-based sensor and
then re-assimilated back into (1), using the KF procedure
described above, for the case where P is artificially corrupted
with multiplicative noise. Consequently, the synthetic
experiment is designed to evaluate the degree to which the
assimilation of noisy soil moisture retrievals compensates for
the impact of uncertain P on API predictions.
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Figure 1. Values of assumed O and R (Q and R) meeting

the innovation whiteness constraint (red line) and the vari-
ance constraint (black line) for the case of (a) serially white
and (b) autocorrelated observing errors. Also plotted are O
and R combinations associated with optimal filter perfor-
mance (blue circles) and the true R used in the synthetic twin
experiment.

[15] As with any implementation of the KF, it is incum-
bent upon the user to provide values of Q and R. Figure la
shows how various estimates impact v temporal statistics in
the case of serially uncorrelated observing errors (p;(§) = 0).
The black line represents the set of Q and R which meet the
v-variance constraint (var(v) = 1) and the red line the set
which satisfies the v-whiteness constraint (pl(y) = 0). They
intersect at the true value of R (20 mm?) applied in this
particular synthetic experiment. Furthermore, the set of Q
and R which produces optimal filtering performance (i.e.,
the smallest observed root-mean-square error (RMSE)
between true and analyzed API) tracks along the pi(v) = 0
constraint such that all combinations of Q and R combina-
tions exhibiting serially white v also provide optimal filter
RMSE performance. Note that such alignment is achieved
even in this somewhat non-Gaussian case where modeling
error is introduced via log-normal multiplicative noise.

[16] However, this alignment is disrupted when auto-
correlated observing errors (corresponding to p;(§) = 0.5)
are introduced into the synthetic experiment (Figure 1b).
Here the Q/R ratio ensuring serially white v increases such
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that the intersection of the variance and whiteness constraint
lines no longer captures the true R or the set of Q and R
ensuring optimal filtering performance. Instead, serially
uncorrelated v are possible only when R is underestimated.
The result being an offset between optimal Q and R com-
binations and those producing serially white v.

[17] Relative to the whiteness constraint, the variance
constraint and optimal performance lines are relatively
insensitive to the presence of autocorrelated observing error
(compare Figures la and 1b). This suggests an alternative
tuning approach for soil moisture data assimilation: inde-
pendently acquire R and subsequently tune O until the
variance constraint is met. In addition to its potential for
robustness in the presence of autocorrelated error, this
approach has the added advantage of improved adaptive
filtering convergence since variance tuning procedures for Q
(given known R) have been shown to converge much faster
than tuning approaches in which Q and R are simultaneously
tuned to achieve white v [Crow and Reichle, 2008]. How-
ever, the new approach requires independent estimates of R
which are not currently available outside of a small number
of heavily instrumented ground sites. To address this need,
the following sub-section reviews an alternative method-
ology for estimating R in the absence of ground-based data.

2.2. Triple Collocation

[18] Unlike v-whitening, tuning to match the variance
constraint ensures optimal filtering performance only if
accurate a priori information concerning R is available.
Such information is generally difficult to obtain [Scipal et
al., 2008]. However, the recent application of triple collo-
cation (TC) approaches to soil moisture error estimation
offers a potential approach for estimating R over wide
continental areas [Scipal et al., 2008; Miralles et al., 2010].
Our particular TC approach is based on the simultaneous
availability of three separate surface soil moisture products:
a passive microwave retrieval dataset based on Advanced
Microwave Scanning Radiometer (AMSR-E) brightness
temperature (7) observations (famsre), @ model-based
product based on (1) (fAp), and an active microwave retrieval
product based on European Space Radar (ERS) scatterometer
measurements (fgrs). See section 3 for a detailed description
of each product. While estimating the same geophysical
quantity, each of these products are impacted by mutually
independent errors [Scipal et al., 2008]. The TC approach
exploits such mutual independence in redundant data sets in
order to obtain RMSE estimates for each individual product.
Here, our goal is to estimate the RMSE of 6,ysrE, and use
this estimate to obtain the error covariance R for the
assimilation of OpsrE into a land surface model.

[19] To begin, each of the three soil moisture products
(OamsrE> Oapr, and Ogrs) is individually decomposed into
climatology mean and anomaly components

6= 6, + () (7)

where (9%(,-) is the climatological expectation for soil mois-
ture on the day-of-year (D) associated with daily time-step ,
and 0'; is the actual anomaly relative to this expectation. This
expectation is obtained by averaging all available soil mois-
ture estimates (for a given product) located within N days of
day-of-year D. Note that this calculation requires access to a
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Table 1. Summary of Physical Characteristics and Ground-Based
Soil Moisture Instrumentation for the USDA ARS Experimental
Watershed Sites

Little River Little Washita Walnut Gulch

(LR) (LW) (WG)
Location (lat/long)  31.6/-83.7 34.9/-98.1 31.7/-110.1
Area (km?) 334 611 150
Soil moisture sites 29 20 21
Climate humid subhumid semiarid
Land cover crops/forest  rangeland/crops  shrubs/short grass
Relief moderate low moderate

multiyear dataset for each of the three soil moisture products.
A choice of N = 365 days corresponds to the removal of a
constant bias while N = 31 days (our default choice) means
that anomalies are calculated relative to a seasonally varying
soil moisture climatology. The impact of N on our analysis is
discussed further in section 4.2. After the application of (7),
the resulting soil moisture anomaly time series are rescaled to
have the same mean and variance. Here this transformation is
based on selecting 6 5p; as a reference data set and linearly
rescaling the other two soil moisture products.

[20] The relationship of our three co-located time series
with the hypothetical true anomaly soil moisture (6'tryr)
time series can now be expressed as

/

0;.apt = 0 TrUE + EiaPL, (8)

/

.
0; amsre = 0; TRUE + SiAMSRE; 9)

/

0;rs = 0, 1ruE + EiRs, (10)
where ' is the anomaly time series for each product time
series (see above) and ¢ denotes time-varying residual errors
in each relative to the unknown truth (6 tryug).

[21] O'trug can be removed from (8) to (10) through a
simple elimination procedure to obtain

/

!
0; AMSRE — ei,API = E€i,AMSRE — €i,API,

(11)

/

,
0; amsre — 9iprs = €1, AMSRE — EiERS- (12)

[22] Assuming that all three error types in (11) and (12)
are mutually uncorrelated, error in 6'spsre can be isolated
by multiplying (11) and (12) and averaging in time (denoted
by “(-)” brackets)

R = {((¢iamsre — &'iap1) (6'iamsrE — 0 iRS) )

= <51‘,AMSRE2>~ (13)

[23] Since the accuracy of R from (13) is based the
assumed independence of error in 6'; amsre, 0';apr and
0';ers, these assumptions can be indirectly verified by
comparing R from (13) to R values associated with optimal
performance of a KF (see section 4). It should also be noted
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that while (13) requires zero cross-covariance between errors,
it produces unbiased R even if autocorrelated errors are
present in one or more of the three input data products.

3. Approach

[24] All subsequent results are based on data assimilation
experiments conducted using real AMSR-E soil moisture
products and validated against independent ground-based
surface soil moisture observations obtained at three data-
rich watershed sites in the United States. Ground data,
remote sensing, modeling and data assimilation components
of the analysis are described below.

3.1. Study Locations and Ground Data

[25] Our analysis is centered on three heavily in-
strumented watershed sites within the United States: the
Little River (LR) watershed near Tifton, Georgia [Bosch et
al., 2007], the Little Washita (LW) watershed in south-
west Oklahoma [Allen and Naney, 1991; Cosh et al., 2006],
and the Walnut Gulch (WG) watershed in southeastern
Arizona [Renard et al., 2008; Cosh et al., 2008]. All three
sites are maintained as experimental watersheds by the
United States Department of Agriculture’s Agricultural
Research Service (USDA ARS). As part of validation
activities for AMSR-E soil moisture products, each USDA
ARS watershed has been instrumented with a series of 20 to
30 spatially distributed surface soil moisture probes whose
continuous measurements can be aggregated to provide an
accurate estimate of watershed-scale surface soil moisture
[Jackson et al., 2010]. Here such estimates are withheld as a
source of validation information to evaluate the performance
of various data assimilation methodologies. Physical details
for the watersheds and their soil moisture instrumentation
are given in Table 1.

3.2. Remotely Sensed Surface Soil Moisture Products

[26] Three separate surface soil moisture retrievals pro-
ducts derived from AMSR-E T} observations are used for
Oamsre. All three products are available starting in mid-
June 2002 at a spatial resolution of approximately 40 km.
The Oamsre-nasa product is the official NASA AMSR-E
Level 3 soil moisture product derived from a dual-
polarization algorithm applied to H- and V-polarized
AMSR-E X band (10.6 GHz) T observations [Njoku, 2008].
The 6Oamsre-uspa product (developed at the USDA
Hydrology and Remote Sensing Laboratory by T. J. Jackson
and R. Bindlish) is based on X band T observations as well,
but uses a single channel (H polarization only) algorithm
[Jackson et al., 2010]. The Osmsre-vu product (developed
at the Vrije University of Amsterdam (VU) by R.A.M. de
Jeu and T. Holmes in collaboration with M. Owe at NASA
Goddard Space Flight Center) applies the algorithm of Owe
et al. [2008] to dual-polarized C band (6.9 GHz) T and falls
back to X band 7 in areas of significant C band radio
frequency interference over the United States and Japan.
Soil moisture retrievals from ascending (1:30 P.M. local
solar time) and descending (1:30 A.M. local solar time)
AMSR-E overpasses are combined into a single time series.
This results in a daily soil moisture product over each
watershed with retrievals on about 4 out of every 5 days.
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[27] The Ogrs product used in our TC procedure is based
on scatterometer observations obtained from the European
Space Radar (ERS-1 and ERS-2) measurements and appli-
cation of the soil moisture retrieval algorithm described by
Naeimi et al. [2009]. From mid-2003 onward, a new 50-km
resolution fgrg retrieval is available approximately once
every 3 days over each watershed. Time series results for
all remotely sensed soil moisture products are obtained by
extracting the closest pixel to the center of each watershed
from gridded versions of each soil moisture product.

3.3. API and KF

[28] As noted above, initial proof-of-concept results are
based on the application of the API model described by (1).
Rainfall input (P) are obtained from the 3B42RT rainfall
product produced by the Tropical Rainfall Measurement
Mission (TRMM) Multisatellite Precipitation Analysis
(TMPA) [Huffman et al., 2007]. The TRMM 3B42RT
product combines multisatellite thermal and microwave
observations to provide 3 hourly rainfall accumulation es-
timates. As a real-time product, it does not ingest ground-
based rain gauge observations. Here 3 hourly 3B42RT
products are aggregated into daily (0 to 0 UTC) accumula-
tions to match the time step of (1). Data assimilation of
various Oanpsre products into the API model within each
watershed is based on the KF implementation described in
section 2.1 and conducted between the onset of AMSR-E
soil moisture availability in June 2002 and the end of
complete ground-data availability on 27 July 2007.

3.4. NOAH/LIS and EnKF

[29] In addition to the KF/API system described above,
additional results are obtained from a more complex system
in which a full EnKF is applied to assimilate surface soil
moisture retrievals into the nonlinear, multilayer NOAH
land surface model (K. Mitchell, The community Noah
land-surface model: User Guide Public Release Version 2.7.1,
available online at http:/www.emc.ncep.noaa.gov/mmb/gcp/
noahlsm) implemented within the NASA Land Information
System (LIS) framework [Kumar et al., 2006]. The NOAH
model is run with four soil layers of thickness: 5 cm, 35 cm,
60 cm and 1 m (from top to bottom). All NOAH surface
soil moisture states are initialized as spatially uniform on
1 February 2002 and spun-up (i.e., allowed to develop
realistic spatial variability) for approximately five months
prior to the assimilation of the first 0 \sre retrievals in
June 2002. NOAH simulations are run on a half-hourly time
step for individual quarter-degree grid cells corresponding
to each of the three watershed sites (LW, LR and WQG). All
forcing data except rainfall is acquired from the North
American Land Data Assimilation System retrospective
forcing data set [Cosgrove et al., 2003]. As in the KF/API
system, rainfall data is obtained from the TRMM 3B42RT
dataset.

[30] Assimilation into the NOAH model is based on a
150-member ensemble EnKF system using the EnKF
module within NASA LIS [Kumar et al, 2008]. This
ensemble size is conservatively chosen to be significantly
larger than typical ensemble size recommendations of about
20 to 50 [see, e.g., Crow and Wood, 2003] for one-
dimensional land surface data assimilation problems. To
create the forecast ensemble, NOAH rainfall inputs are
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perturbed via multiplicative noise sampled from a mean-
unity, log-normal distribution with a fixed standard devia-
tion of 0.5. Perturbing only rainfall can lead to a collapse of
the NOAH EnKF ensemble between rainfall events. Con-
sequently, mean-zero, additive Gaussian noise is also
directly applied to the each of the four NOAH soil moisture
layers. Based on past experience, these noise values have
standard deviations of /0, v/O/3, /O/6, and \/O/10 (from
top to bottom, respectively) and a multilayer cross-correlation
matrix of:

1.0 06 04 02

06 1.0 06 04

04 06 1.0 0.6

02 04 06 1.0

[31] All random model perturbations are constructed to
have a temporal correlation length of 2 h (i.e., four NOAH
time steps). As noted above, the requirement for the user to
make (largely) arbitrary assumptions regarding the statistical
structure of modeling perturbations is a general problem in
the application of EnKF to complex land surface models. In
addition, by making fixed assumptions concerning the
variation of error magnitude and cross-correlation with depth,
we are reducing the potentially complex NOAH model error
parameterization problem to the estimation of a single scalar
parameter Q.

[32] Prior to any data assimilation, 0nsrE-UsDA Tetrievals
are linearly rescaled to have the same temporal mean and
variance as updated NOAH surface soil moisture predictions
at each individual watershed site. These rescaled retrievals
are then assimilated into NOAH at their corresponding
acquisition times (i.e., 1:30 or 13:30 local solar time). EnKF
updating is limited to the four vertical soil moisture states in
NOAH, and validation is performed by comparing the EnKF
surface soil moisture analysis, calculated as the mean of
the EnKF ensemble for the top NOAH soil moisture layer,
to watershed-average surface soil moisture observations
obtained at each of the watershed sites (section 3.1). As in
KF/API analysis, the analysis is conducted between mid-
June 2002 and July 2007. R

[33] Unless otherwise specified, all references to tuning Q
and/or R values (for either the API/KF or the NOAH/EnKF
system) are based on a batch calibration approach where the
analysis is run repeatedly from start to finish. At the end of
each individual analysis run, temporally fixed values of Q
and/or R are modified using a simple tangent linear search
algorithm to iteratively acquire a v-sequence that satisfies
the v-variance and/or whiteness constraints.

4. Results

[34] As discussed above, preliminary results are based on
the assimilation of 4\srE retrievals into the API model in
(1) using a standard KF (section 3.3). In addition, supple-
mental results are obtained for the case of assimilating
O amsre 1nto the multilayer NOAH model using a full EnKF
(section 3.4).
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Figure 2. For the assimilation of the 0apmsre-vu soil
moisture product into the API model over the LW watershed,
the mid-2007 time series for the open loop API simulation,
rescaled O anmsre-vyu Observations, the KF surface soil mois-
ture analysis, and the ground-based estimate of watershed-
scale soil moisture.

4.1.

[35] Figure 2 provides illustrative daily time series results
for the KF-based assimilation of the 6 snsre-vu product into
(1) within the LW watershed for the case where O and R are
obtained via v-whitening (i.e., tumng Q and R until ) =
0 and var(r) = 1). Also plotted is the time series of water-
shed-averaged soil moisture obtained from averaging
ground observations within the watershed. All values are
plotted after transformation into the API model’s soil
moisture climatology. RMSE comparisons to the ground-
based observations allow for the evaluation of various data
assimilation approaches.

[36] Figure 3 illustrates the impact of R on the RMSE
accuracy of KF surface soil moisture predictions for the case
of assimilating 0 nsre-vy into the API model over the LW
watershed. The plotted black curve is derived by examining
a range of assumed R and tuning Q such that var(v) = 1. The
resulting curve is bounded by API modeling results obtained
without assimilation (the labeled “open loop” line) and
optimal data assimilation results obtained from applying a
Colored Kalman filter (the “ColKF” line). Unless otherwise
noted, all subsequent RMSE and R values are reported in the
soil moisture climatology of the ground-based observations.

[37] Unlike the standard KF, the ColKF is designed to
account for the presence of autocorrelated observing and/or
modeling errors [Chui and Chen, 1991]. Here, model noise
1 and observation error £ are modeled as first-order, auto-
regressive processes at a discrete daily time interval ¢

Impact of Autocorrelated Observing Error

N = Xni—1 + G (14)

& =08 1 + i, (15)

CROW AND VAN DEN BERG: ESTIMATING DATA ASSIMILATION ERROR PARAMETERS

W12519

where ¥ and © are constant scalar values and ¢ and p are
mean-zero, random Gaussian variables with respective var-
iances Q and R and no autocorrelation or cross correlation.

[38] Based on these error models and a state-augmenta-
tion procedure, the ColKF generalizes the KF implementa-
tion in (1) to (6) to explicitly account for autocorrelated
modeling and observing errors (see Chui and Chen [1991]
for details). The ColKF line in Figure 3 represents the lowest
ColKF RMSE achievable via automated batch tuning of all
four parameters in (14) and (15) (i.e., R, O, X, and O) to
optimize the fit of ColKF surface soil moisture results to
ground-based observations. While such tuning provides an
optimal analysis, it is possible only in rare data-rich sites
possessing adequate ground-based soil moisture monitoring
networks.

[39] Between these two bounds, the performance of the
KF depends on R. A large value of R leads to reduced
weight on assimilated observations and to results that con-
verge back to the open loop case of running the model
without assimilation. Likewise, very small values of R con-
verge to a sub-optimal direct insertion case where no weight
is applied to the background API forecast. As expected, an
optimal choice for R lies in between. Due to the degrading
effects of autocorrelated observing errors on a KF filter
implementation [Daley, 1992], no choice of R can match the
calibrated ColKF. However, a proper choice of R produces
nearly optimal results even in the presence of autocorrelated
observing errors. The challenge lies in obtaining R values
associated with the RMSE minimum in Figure 3.

[40] As illustrated in Flgure la, the classical approach for
finding this minimum is adjusting R until pl(y)

Unfortunately, v-whitening in Figure 3 leads to a R Value
that is clearly too low (Figure 3). Based on our earlier dis-
cussion of Figure 1b, such underestimation implies the

0.07

I Direct Insertion

/

Open Loop

0.06

v—Whitening
Ve

RMSE versus ground-based soil moisture [m3m'3]

0.05 — —
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O'040 0.‘02 | 0.1)4 | 0.‘06 O.‘OS
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Figure 3. For the assimilation of the 8 4nsrp-vy s0il mois-

ture product into the API model over the LW watershed, the
impact of estimated R (R) on the RMSE accuracy of KF sur-
face soil moisture estimates versus ground data.
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Figure 4. Temporal autocorrelation functions for error in
all three @anvsre products (USDA, VU, and NASA) within
all three watershed sites (LW, LR, and WQ). Circles indi-
cate points on the autocorrelation functions which are not
statistically significant at 95% confidence.

presence of autocorrelated errors in assimilated 0ansre-vU
retrievals.

[41] Figure 4 directly examines this issue by calculating
the autocorrelation function for error in all three AMSR-E
surface soil moisture products (0amsre-uspa> OAMSRE-VU
and Oanmsre-Nasa) at each of the three watershed sites (LW,
LR and WG). Here, error is explicitly calculated as the
difference between ground-based observations and retrievals
after a 31 day moving average climatology is removed from
each product. Even after the removal of such seasonality,
results demonstrate the presence of significant autocorrela-
tion in retrieval errors for all three O5psre products at all
three watershed sites.

[42] Such autocorrelation appears to have a detectable
impact on R results obtained from v-whitening. In particular,
black symbols in Figure 5 plot the relationship between
estimated (via v-whitening) and optimal R for all three
Oamsre products at all three watershed sites (open c1rcles)
and demonstrates that R obtained via v-whitening consis-
tently underestimates values of R associated with optimal
KF performance. These real data assimilation results are
therefore consistent with earlier theoretical predictions in
Figure 1b.

4.2. TC-based R Estimates

[43] Results in Figures 3 to 5 illustrate that v-whitening
does a poor job of identifying values of R associated with
the optimal assimilation of Osmsgre into (1). An alternative
approach for obtaining R for O,nsrg is the TC procedure
described in section 2.2. However, before the procedure is
applied, it is important to clarify the relationship between
optimal R and various types of RMSE measures for soil
moisture retrieval accuracy.

CROW AND VAN DEN BERG: ESTIMATING DATA ASSIMILATION ERROR PARAMETERS

W12519

[44] Since our data assimilation approach is based on
rescaling surface soil moisture retrievals prior to their
assimilation (see section 2.1), the correct RMSE formulation
should be bias-free (i.e., calculated after the relative long-
term bias between satellite-based surface moisture retrievals
and ground-based observations has been removed). How-
ever, it i1s unclear whether such correction should be based
on removing a single long-term soil moisture mean or a
seasonally varying climatology. In the former case, RMSE
values, or “total RMSE,” reflect the ability of the retrieval
product to capture both a seasonal soil moisture climatology
and anomalies relative to this climatology. In the latter case,
the “anomaly RMSE” is sensitive only to the representation
of anomalies.

[45] Figure 6 examines this issue by plotting both types of
RMSE (calculated using the ground-data available at each
of the three USDA ARS watershed sites) against values of
Sqrt(R) which produce optimal RMSE performance (i.e., the
lowest RMSE fit to ground-based soil moisture observa—
tions). The comparisons reveal that RMSE values containing
seasonal climatology errors (i.e., “total RMSE”) slightly
overestimate optimal Sqrt(R) values and calculating RMSE
with anomaly values in which a seasonal climatology has
been removed (i.e., “anomaly RMSE”) provides a better
representation of optimal Sqrt(R). The implication is that a
TC approach will provide more useful R results when
applied to AMSR-E soil moisture data sets in which a
seasonal climatology has been explicitly removed.

[46] Based on this analysis, the TC approach is applied to
(1) one of the O vsre products, (2) a soil moisture proxy
value predicted by the API model, and (3) soil moisture
retrievals from the ERS scatterometer after each product
has been decomposed into anomaly products using (7) and
N = 31. Figure 7 plots the resulting anomaly time series
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Figure 5. Relationship between optimal KF Sqrt(R) and
Sqrt(R) derived from v-whitening (in black) and TC (in
red). Points are shown for all three 0apsre products
(USDA, VU, and NASA) within all three watersheds
(LW, LR, and WG).
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for 0'ap1, 0 amsre-vu and 6'grg (after transformation into
the API climatology) at the LW site. These three anomaly
data products are then inputted into (13) to obtain R values
for use during the KF-based assimilation of fsysre pro-
ducts into the API model. The process is repeated for all
three Oamsre products in all three watersheds. For each of
these nine total cases, red symbols in Figure 5 indicate the
relationship between TC-based R and optimal R which
minimize the RMSE of KF predictions relative to ground-
based surface soil moisture measurements. In each case,
the TC approach provides a better estimate of optimal R
than v-whitening (i.e., tuning Q and R until p;(v) = 0 and
var(v) = 1). In particular, it avoids the low bias observed
in R obtained from v-whitening in the presence of auto-
correlated observing errors (Figure 5). The close fit between
optimal and TC-based R in Figure 5 also indirectly verifies
the independent error assumptions underlying TC, since
cross correlation in €' spp, ' amsre-vu and 0'grs errors would
induce bias in R obtained from (13).

4.3. API/KF Analysis Results

[47] The improved accuracy of R estimates in F igure 5
should lead to better KF surface soil moisture predictions.
Table 2 details the impact of various strategies for obtaining
R on the accuracy of the subsequent KF surface soil mois-
ture analysis. A range of approaches are examined: (1) a
direct insertion (DI) case where R = 0.0, (2) a v-whitening
case where R and Q are tuned until p;() = 0.0 and var(v) =
1, and (3) a batch TC case where R is obtained via the TC
approach described above and Q is batch-tuned until the var
(v) = 1. Also listed are open loop (OL) API modeling results
for the case of no assimilation and optimal ColKF data
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assimilation results. Note that all results to this point are
based on a “batch” tuning methodology where all TC error
estimation and KF calibration is conducted by repeatedly
running the KF analysis for the entire June 2002 to July
2007 time period. More operationally relevant “adaptive”
tuning techniques where estimates are obtained during a
single run through the dataset are examined in section 4.3.1.

[48] For all nine cases in Table 2 (the three O4nsrE pro-
ducts over three different watersheds) the batch TC-based
calibration approach either matches or outperforms the batch
v-whitening case. In addition, the batch TC case is typically
only marginally worse than the theoretically optimal ColKF
case, suggesting that our approach is effective at obtaining
approximately optimal filter performance.

[49] Despite the use of a var(v) = 1 constraint, a close
examination of synthetic data results in Figure 1b suggests
that a lower v-variance target may actually be advantageous
in the presence of autocorrelated observing errors. Specifi-
cally, the intersection between true R and a var(v) = 0.75
constraint in Figure 1b is closer to the optimal Q/R ratio than
a var(v) = 1.00 constraint. This implies that an advantageous
ad hoc correction would be to redefine the variance con-
straint as var(v) = 1.00 — § where § > = 0.00. To test this
possibility, API/KF TC results in Table 2 were regenerated
for a range of § between 0.00 and 0.50. However, in contrast
to the synthetic experiments in Figure 1, real data results
in Table 2 are not consistently improved by any choice of
6 > 0.00. Consequently, retaining the original var(v) = 1
constraint appears justified.

4.3.1. Adaptive Filtering

[50] As noted above, all results to this point have been
based on batch optimizing techniques in which the KF
analysis is run repeatedly end-to-end in order to tune
vstatistics and acquire TC-based R. Such reanalysis-type
approaches are generally difficult to implement in opera-
tional environments. In particular, an operational imple-
mentation presents two new challenges. First, at the onset of
the implementation, sampling errors in TC-based R will be
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Figure 7. The mid-2007 time series of Oapy, OaMSRE-VU>
and fgrs anomalies for the LW watershed site.
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Table 2. For the KF/API Data Assimilation Case, RMSE Fit Ground-Based Observations for the Open Loop (OL), Direct Insertion (DI),

v-Whitening, Triple Collocation (TC), and ColKF Cases®

OL DI v-Whitening (Batch) TC (Adaptive) TC (Batch) ColKF
Site Product (m* m™) (m* m™) (m® m ) (m® m %) (m® m™%) (m* m™3)
LW USDA 0.06028 0.05819 0.05564 0.05079 0.05048 0.04922
VU 0.06027 0.06230 0.05721 0.04633 0.05139 0.04311
NASA 0.06053 0.07219 0.06619 0.05657 0.05702 0.05213
LR USDA 0.05602 0.04092 0.03904 0.03950 0.03842 0.03761
VU 0.05588 0.04895 0.04302 0.04122 0.04074 0.04042
NASA 0.05697 0.04180 0.03955 0.04092 0.04003 0.03923
WG USDA 0.02417 0.01998 0.01884 0.01781 0.01694 0.01678
A% 0.02396 0.01797 0.01685 0.01635 0.01525 0.01508
NASA 0.02267 0.01847 0.01786 0.01756 0.01786 0.01676

“Results are broken down by AMSR-E soil moisture data product (USDA, VU, or NASA) and site (LW, LR, or WG).

large due to averaging (13) over short time periods. Second,
the tuning of Q to ensure var(r) = 1 will have to be per-
formed on-line and updated continuously as real-time data
becomes available.

[51] To examine these challenges, the TC-based calibra-
tion approach was modified to run in an adaptive mode
based on dividing the total run time into 150 day windows
and assuming no data available prior to the start of the
analysis in June 2002. At the end of each window, all data
acquired since June 2002 are used to obtain R from (13).
Since ERS observations (and thus TC inferences) are not
available until mid-2003, R is held fixed at an initial value
of 0.04 m* m™ prior to this point.

[52] In concert, Q is adaptively adjusted at the end of each
150 day window using an ad hoc nudging rule

3/20;  var(v), > 1

&
T

3/4 O var(v), <=1

where

O = (0+04)/2 (16)
and var(v); is the sampled v-variance within each non-
overlapping window ;. Since adaptive filtering results are
somewhat sensitive to the initial specification of error
magnitudes, the entire adaptive analysis is repeated ten
times using different starting values of Q for June 2002.
Reported results reflect the average RMSE obtained for
these ten runs.

[53] Despite this change, transitioning from a batch cali-
bration approach to an adaptive framework is associated
with little or no degradation in KF performance (Table 2).
This result is consistent with Crow and Reichle [2008] who
demonstrate that, unlike adaptive approaches tasked with
the simultaneous estimation of both O and R, adaptive
approaches like (16) can quickly recover Q when provided
an accurate external estimate of R.

[s4] Expanding on earlier results from Figure 3 (based
solely on the assimilation of 6,\sre-vy over the LW site),
Figure 8 summarizes results in Table 2 by averaging nor-
malized RMSE results across for all nine possible soil
moisture product/watershed combinations (i.e., all three

0 amsre products assimilated over all three watershed sites).
Normalization is based on dividing the RMSE for KF results
by the RMSE of the corresponding open loop case. Con-
sequently, a value of one represents no net improvement
relative to the case of no data assimilation. Simple direct
insertion eliminates (on average) about 12% of the open
loop error and another 6% (for a total reduction of 18%) is
eliminated by batch v-whitening. In contrast, our TC-based
tuning eliminates either 23% or 24% of the open loop error
(depending on whether tuning is performed in batch or
adaptive mode). These values are only slightly less than the
theoretical maximum (27% of open loop error) realized via
the application of a tuned ColKF.
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Figure 8. The impact of direct insertion (DI), v-whitening,
and triple collocation (TC) strategies for obtaining R on
accuracy of KF/API and EnKF/NOAH surface soil moisture
predictions (averaged across all soil moisture products and
watershed sites). All results are normalized by the RMSE
of the no-assimilation open loop case to reflect the fraction
of modeling error remaining after assimilation. Also shown
are Colored Kalman filter (ColKF) results in which error
parameters have been tuned to optimize filter performance.
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Table 3. For the API/KF Data Assimilation System, the Compar-
ison Between Sqrt(f?) Obtained From r-Whitening and Optimal
Values of Sqrt(R) for Applying the KF Directly to the Raw API
Model in (1) or the Anomaly-Based API Model in (17)

Optimal v-Whitening  Optimal v-Whitening
Sqrt(R) Sqrt(R) Sqrt(R) Sqrt(R)
Raw Raw Anomaly Anomaly
Site  Product  (m® m™) (m® m™%) (m® m™) (m* m™)
LW  USDA 0.04137 0.01811 0.04388 0.01966
VU 0.05276 0.02219 0.04281 0.03166
NASA 0.05718 0.02685 0.05139 0.02608
LR USDA 0.02671 0.01683 0.02176 0.01736
VU 0.03632 0.02578 0.03447 0.03569
NASA 0.02540 0.02166 0.02011 0.01279
WG  USDA 0.01533 0.00723 0.01157 0.00668
VU 0.01390 0.00686 0.01035 0.00945
NASA 0.01189 0.00560 0.01195 0.00299

4.3.2. Potential Impact of Seasonality

[55] Another neglected factor in our data assimilation
analysis (for both the API/KF and NOAH/EnKF systems) is
the impact of differences in seasonal climatologies between
modeled and observed surface soil moisture. While 0snsre
retrievals are rescaled to match the observed probability
density function of the model prior to data assimilation, such
rescaling is based on a single bulk transformation which
does not rectify potential seasonal differences between the
two products. If present, such differences likely contribute
to autocorrelation in retrieval errors.

[s6] In order to examine the magnitude of this contribu-
tion, v-whitening was repeated for the API/KF case where a
31 day moving average climatology is subtracted from
OamsrE retrievals, the P time series used to force the API
model, and ground-based soil moisture measurements used
for verification.

[57] Due to the linearity of (1), it can be trivially modified
to function in this new anomaly space

APl = 3APl, | + P, (17)

where the superscript “/” indicates anomalies relative to a
31 day moving window climatology. The decomposition of
Oamsre retrievals into corresponding anomalies (6 Amsre)
allows the entire KF-based assimilation process in (1) to (6)
to be repeated in an anomaly space where seasonality has
been explicitly removed [Crow et al., 2010]. Results from
these experiments can then be used to clarify the impact of
soil moisture seasonality on previous results.

[s8] Experimental results for the KF-based assimilation of
0’ amsre anomalies into (17) are given in Table 3. “Raw”
results reflect earlier R results shown in Figure 5 and

“anomaly” results duplicate the API/KF data assimilation
experiment after the removal of a seasonal climatology from
all data sets. While the gap between optimal values of R and
those obtained from v-whitening shrinks, a clear underes-
timation of the R persists even for this new “anomaly” case.
This suggests that the impact of autocorrelated errors on R
obtained from v-whitening remains even after the explicit
removal of seasonal cycles from soil moisture data products.

4.4. NOAH/EnKF Analysis Results

[s9] While appropriate for initial proof-of-concept results,
the API model has a number of well-known shortcomings
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Table 4. For the NOAH/EnKF Data Assimilation System, RMSE
Fit to Ground-Based Soil Moisture Observations for the Open
Loop (OL), v-Whitening, and TC Cases

OL v-Whitening TC
Site Product (m® m™) (m* m™) (m® m™)
LW USDA 0.05155 0.05049 0.04692
LR USDA 0.03953 0.04124 0.03900
WG USDA 0.02185 0.01907 0.01719

which hamper its physical interpretation. For instance, since
it lacks a maximum storage capacity, time series results for
the API model, and other products which have been scaled
into the API model climatology, show unrealistic levels of
storage for the top 5-cm of the soil column (see, e.g.,
Figure 2). In addition, the API/KF system cannot capture
the impact of non-Gaussian precipitation errors or nonlinear
land surface processes. Consequently, it is not obvious
whether results presented up to this point are relevant for the
assimilation of surface soil moisture retrievals into a more
realistically complex (and nonlinear) land surface model
using an EnKF. To address this issue, the relative perfor-
mance of our TC-based calibration approach versus v-
whitening was also assessed for the case of assimilating
O amsre-uspa into the NOAH model using an EnKF.

[60] Table 4 summarizes EnKF/NOAH results (in terms
of the RMSE fit to observed surface soil moisture in all three
watersheds) for the NOAH open loop case (lacking any data
assimilation) as well as the case of obtaining R using both
batch v-whitening and our new TC-based approach (i.e.,
obtaining R from TC and tuning Q until var(v) = 1). Relatlve
to the API model, the NOAH model produces a more
accurate open loop simulation and therefore reduced relative
improvement upon the assimilation of 6nsre-uspa. How-
ever, as in the KF/API system, better relative surface soil
moisture predictions are obtained when applying the TC-
based calibration approach versus v-whitening (Table 4).

[61] Averaged NOAH/EnKF results across all three
watersheds in Figure 8 show that switching from batch
v-whitening to our TC-based approach increases the frac-
tion of filtered RMSE in the NOAH/EnKF from about 3% to
about 11% of the open loop RMSE. As in the in KF/API
case, this improvement is associated with a clear increase in
TC-based R relative to excessively low values obtained
from v-whitening (Table 5).

[2] One reason for the poor performance of the v-
whitening NOAH/EnKF case in Table 4 and Figure 8 may
be unique problems associated with the overestimation of O
when applying an EnKF to a nonlinear land surface model.
Excessively low values of R obtained from »-whitening
tend to be compensated by an increase in Q (Figure 1b).
Large O, in turn, requires large mean-zero Monte Carlo
model perturbations (1) during the EnKF forecast step. When

Table 5. For the NOAH/EnKF Data Assimilation System, Sqrt(R)
Acquired From v-Whitening and TC

Site Product v-Whitening (m* m™>) TC (m® m™)

LW USDA 0.01620 0.02880

LR USDA 0.01520 0.02390
USDA 0.02140 0.03370
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applied to nonlinear models, mean-zero perturbations with
sufficient variance can cause the soil moisture forecast
ensemble to become biased, resulting in degraded EnKF
performance [Ryu et al, 2009]. This problem is not
encountered when assimilating into a linear model. There-
fore, the degrading effects of v-whitening in the presence of
autocorrelated observing errors may be amplified by non-
linear model physics.

5. Summary and Future Work

[63] The accurate estimation of modeling and observing
error parameters represents a remaining barrier to the
widespread implementation of land data assimilation sys-
tems. Here, we describe the theoretical impact of auto-
correlated observing errors on techniques for defining such
parameters using temporal v statistics (Figure 1). Given the
apparent serial autocorrelation of error present in currently
available soil moisture retrieval data sets (Figure 4), these
impacts are expected to be relevant for on-going attempts to
assimilate surface soil moisture retrievals into land surface
models. The theoretical signature associated with auto-
correlated observing errors, the systematic underestimation
of R acquired from v-whitening (Figure 1b), is observed in
real data cases using an API/KF data assimilation system
(Figures 3 and 5) and is shown to have a discernible impact
on the accuracy of a KF surface soil moisture analysis
(Table 2 and Figure 8). An alternative strategy based on
using a triple collocation (TC) procedure to independently
estimate R, and a v-variance tuning approach to subse-
quently obtain Q, consistently provides better R estimates
(Figure 5) and enhances KF surface soil moisture predic-
tions (Table 2 and Figure 8). While this approach does not
produce a fully optimal analysis, it is shown to be only
slightly worse than a batch-tuned ColKF approach in which
autocorrelated errors are optimally considered and appears
readily adaptable to an adaptive filtering framework in which
all error parameter estimation is done on-line (Table 2). The
relative superiority of a TC-based calibration approach to
tuning via v-whitening is also confirmed for the case of
assimilating @amsre-uspa into the nonlinear, multilayer
NOAH land surface model using an EnKF (Table 4 and
Figure 8).

[64] A potential extension of this work is addressing its
relevance for the direct assimilation of low-frequency
(<10 GHz) radiometer T observations instead of soil
moisture products derived from these observations. The
presence of autocorrelated errors in soil moisture retrievals
obtained from inverse radiative transfer models implies that
forward versions of these same models will likewise pro-
duce autocorrelated error in T predictions. Consequently,
when such forward models are applied during direct T
assimilation, the autocorrelation problem is simply shifted
over to the modeling side of the data assimilation system.
Therefore, in order to examine the potential relevance of this
work for Tp assimilation, future research is required to
examine the possibility of correcting for the impact of auto-
correlated modeling errors using a similar set of tools.

[65] Our approach is also somewhat simplified in the
sense that the entire modeling error perturbation structure of
the NOAH model is reduced to a single scalar parameter Q.
Other important model error attributes (e.g., the variance of
multiplicative rainfall perturbations or the vertical correla-
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tion structure of errors within various soil layers) are fixed
and presumed known. Consequently the approach provides
only a partial constraint on potentially complex modeling
error structure. Future work is required to fully address this
issue and evaluate data assimilation performance for each
technique over a wider range of model outputs (e.g., root
zone soil moisture or surface energy fluxes).

[66] Finally, it should be stressed that results in this
analysis are particularly relevant for preparatory activities
aimed at the design of data assimilation systems to ingest
soil moisture products from the NASA Soil Moisture
Active/Passive (SMAP) mission [Entekhabi et al., 2010].
The improved accuracy and spatial resolution of soil mois-
ture retrievals obtained from L band SMAP measurements
(versus existing X and C band AMSR-E measurements)
should improve the overall performance of data assimilation
systems relative to the no-assimilation open loop case. In
addition, SMAP’s ability to provide both active and passive
soil moisture products will feed directly into the TC
requirement for multiple independent soil moisture data
sources.

[67] Acknowledgment. Support for this study was provided by the
NASA Terrestrial Hydrology Program through grant NNG05GB61G.
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